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synopsis 
A theoretical expression has been derived to describe the strain behavior of rigid plastic 

composites containing spherical filler particles. By combining the predicted ultimate 
strength values with the appropriate modulus relationship, the complete stress-strain 
history and corresponding fracture energy may be estimated. The theoretical predic- 
tions were compared with experimental values obtained for a general-purpose polyester 
resin containing spherical glass beads. The influence of silane coupling agents and filler 
adhesion was also evaluated. Although the experimental values showed considerable 
scatter, the general trend agreed fairly well with the theoretical predictions. 

INTRODUCTION 
Recently there have been a number of publications dealing with the 

mechanical properties of the polymers containing glass microspheres. 
Such composites possess good mechanical properties and good processability 
at reasonable cost. Glass microspheres have also been frequently used by 
investigators seeking theoretical correlations for the mechanical properties 
of particulate-filled systems. Due to the perfect geometrical shape of 
glass microspheres, mathematical treatment is much easier than for other, 
irregular-shaped fillers. Sahu and Broutman used spherical particles for 
finite element analysis of particulate-filled polymeric resins in order to  
establish the relationship between stiffness, strength, and the volume 
fraction of filler. Leidner and Woodhams2 also propose a mathematical 
model for the strength of model composites containing spherical particles. 

Fracture properties of polymeric systems filled with glass microspheres 
were studied by Broutman and Sahu3 and Wambach, Trachte, and Di- 
B e n e d e t t ~ . ~  Smith5 developed an equation relating the strain behavior of 
composites containing a cubic close-packed arrangement of spherical 
particles to  the volume fraction of the spherical particles. This relation- 
ship was employed by Narkis and Nicolais6 in the characterization of SAN 
polymers filled with glass beads. A similar approach was also proposed by 
Nielsen’ several years later in which equations were developed for cal- 
culating the area under the stress-strain curve. Such idealized particle 
distributions do not represent the true situation in most filled composites 
and therefore need some modification for real situations.8 
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TABLE I 
Tensile Strength of Polyester Resin- Glass Bead Composites' 

Glass oUc at  
bead code Diamet.er, Surface Vb = 0, Composite tensile 
number mm finish psi strength uUc,c psi 

~~ 

1721 0.354-0.177 no coating 5950 MOvb + 5950(1 - Vb) 
2429 0.105-0.053 no coating 7071 540Vb + 7071(1 - vb) 
3000 0.105-0.044 no coating 8227 54CVb + 8227(1 - vb) 
1721 0.354-0.177 CPOIb coating 2300 1 O l O O V b  + 2300(1 - Vb) 
2429 0.105-0.053 CPOI coating 5700 ~ o ~ o o v b  + 5700(1 - v b )  

3000 0.105-0.044 CPOI coating 7600 1OlOOVb + 7600(1 - vb) 

6 From reference 2. 
b Proprietary coating (Potters Ind.) recommended for use with polyester resins. 

For coated beads, equations valid for Va 3 v b  m i n  (see reference 2). 

Several theoretical treatments on the stress-strain behavior of parti- 
culate-filled systems have been summarized by N i e l ~ e n . ~  

In  this work, equations were developed to predict the ultimate strain and 
the area under the stress-strain curve for particulate-filled polymers. 
These equations take into account deviation of real systems from linear 
elastic behavior. 

EXPERIMENTAL 
Polyester resin (Stypol 40-2364, Freeman Chemical Co.) was used in all 

the examples. The resin was cured with 1% Lupersol DDM (6OY0 MEK 
peroxide in dimethyl phthalate) and 0.3 wt-% of cobalt naphthenate (6% 
solution in mineral spirits). The composites were prepared by mixing a 
weighed quantity of glass beads (Potters Industries Inc.) with the cata- 
lyzed resin and casting the mixture between glass plates. Further details 
of the preparation are given in reference 2. The experimental tensile 
strength relationships for these composites are summarized in Table I. 

Tensile stress-strain curves were obtained on the Instron tester using a 
2-in. gauge length extensometer. Cross-head speed was set a t  0.05 cm/ 
min. Izod impact strength was obtained using unnotched samples 2.5 in. 
X 0.5 in. X 0.15 in. There was an attempt made to  use the notched 
samples, but the measured values were too small for comparison. The 
values of the ultimate strain and the area under the stress-strain curve are 
the average of two determinations, and the values of the Izod impact 
strength are the average of four determinations. 

THEORETICAL TREATMENT 
An earlier paper2 described the strength behavior of polyester resin 

composites containing spherical glass beads. A response similar to that of 
discontinuous short glass fiber-filled composites is apparent in that  a mini- 
mum in the composite strength is found at the low volume fractions. The 
minimum strength occurs at the intersection of two linear relationships, 
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one governing the high volume fractions of glass beads and the other 
governing the low volume fraction region. The experimental relation- 
ships found in this system are reproduced in Table I. 

In  order to obtain expressions for the elongation and the area under 
the stress-strain curve for particulate-filled systems, a few simplifying 
assumptions were made: 
(a) The nonlinearity of the stress-strain curve of the composite was due 

to the nonlinear behavior of the matrix. 
(b) The equation describing Young’s modulus of the particulate filled 

system has the form 

E c / E m  = .f(vb> = c (1) 

where Em is Young’s modulus of the matrix, E, is the Young’s modulus of 
the composite, and v b  is volume fraction of the beads. At any particular 
volume fraction of filler the ratio of Young’s modulus of the composite to 
that of the matrix is a constant. As the stiffness of the matrix decreases 
a t  high stresses, the stiffness of the composite also decreases. 

(c) The ratio of the stress carried by the composite to the stress carried 
by the matrix for any volume fraction of filler V, is equal to the ratio of 
the ultimate tensile strength of the composite to the stress carried by the 
matrix a t  the breaking point of the composite; that is, 

g c l / g m l  = g u c / u m  (2) 

where act is the stress carried by the composite, urnt is the corresponding 
stress carried by the matrix, uuc is the ultimate strength of the composite, 
and urn is the stress carried by the matrix a t  the breaking point of the com- 
posite (see Fig. 1). 

Assumption (a) is valid for composites in which the separation between 
the matrix and the filler particles is very minor, i.e., for composites with 
good matrix-filler adhesion or for composites with poor matrix-filler ad- 
hesion but low ultimate strain of the matrix (up to about 5%). 

Assumption (b) has ample justification in many of the published papers 
relating to the stiffness of particulate-filled systems. For example, Ein- 
stein’s equationg has the form 

EJEm = 1 + 2.5Vb (3) 

and Guth and Smallwood’s relationship9 also shows a constant Ec/Em 
ratio when vb is constant: 

E,/Em = 1 + 2.5VD + 14.5VO2. (4) 

The relationship proposed by Kerner’O was modified by Nielseng for the 
case of fillers which were much more rigid than the matrix to yield 
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Fig. 1. Schematic representation of the assumption uuc/um = uc'/um'. Dashed lines 
show the corresponding stresses in the composite and in the matrix. 

where Y, is Poisson's ratio of the matrix. 
and Ishaill simplified for the case of high-stiffness filler has the form 

The equation proposed by Cohen 

Note that all these expressions, although quite different from each other, 
conform to the general relationship expressed by eq. (1). 

Lastly, asssumption (c) follows assumption (b). If the ratio of the 
moduli is constant, then the ratio of stresses is also independent of the 
applied stress. This is schematically illustrated by Figure 1. If the stress 
applied to the composite is equal uc', then the matrix carries a stress a,' 
The ratio between them is always equal to u,Ju,. This is true for ideal 
elastic materials, and only small deviations would be expected for most 
rigid thermosetting materials. 

The value of the stress carried by the matrix a t  the breaking point of the 
composite can be obtained by. extrapolating the line uuc versus v b  to v b  = 
0, as shown in Figure 1 and discussed in detail in reference 2. 

Ultimate Strain 

Increase of the strain due to  the increase in the applied stress is given 
by Hooke's law, 

de, = duc'/Ec (7) 
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where e ,  is the strain of the composite. 
eq. (8) can be obtained: 

By combining eqs. (7) and ( l ) ,  

d e c  = da,’/Emc. (8) 

da,‘ can be expressed in terms of dam‘ by differentiating eq. (2) : 

(9) 
QUG 

am 
da,’ = -dam’. 

After combining eqs (8) and (9) and substituting E,/Em for c, the expression 
for de, has the form 

since 

and 

a m / E m  = erne (12) 

where tee is the ultimate strain of the elastic material having the ultimate 
strength equal to uuc and a Young’s modulus equal to  the initial Young’s 
modulus of the composite; em, is the ultimate strain of the elastic material 
having an ultimate strength equal a, and a Young’s modulus the same as 
the initial Young’s modulus of the matrix (see Fig. 1). 

From Hooke’s law, we obtain 

dam’/Em = de,. (13) 

Combining eqs. (11)’ (12)’ and (13) with eq. (lo), the following expression is 
obtained 

ece 

erne 
de, = - dem. 

The integrated form of eq. (14) is 

em 

Cme 
ec = - c,, 

where em is the strain of the matrix a t  a stress equal to that carried by the 
matrix a t  the fracture point of the composite. 

e,, represents the ultimate strain of the elastic composite, and the ratio 
cm/eme represents the deviation of real systems from linear behavior. 

In order to  use eq. (15)’ ece is first calculated from eq. (11)’ and uUc is 
calculated from the theory described in reference 2 .  E, can be calculated 
from one of the eqs. (3) to  (6) or from any other relationship having the 
form E,/Em = f ( V o ) .  erne may be obtained from eq. (12). 
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Fig. 2. Stress-strain curve of the matrix compared with the elastic behavior. 

Area Under the Stress-Strain Curve 

Similarly, the area under the stress-strain curve of a composite containing 
The total energy necessary to elongate spherical fillers may be derived. 

such a composite by dec is given by the relationship 

de, = u,'de, (16) 

where ec is the energy used to elongate the composite. 
By substituting eqs (2) and (14) into eq. (16), de, may be expressed as 

uuc Ece 

urn erne 
de, = - - urn'dern 

where 

and 
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Fig. 3. Young’s modulus of the matrix as a function of applied stress. 

Fig. 4. Area under the tensile stress-strain curve of the matrix as a function of the 
applied stress, compared with the elastic behavior. 

where ece is the area under the stress-strain curve for an elastic material 
having an ultimate strength uUc and a Young’s modulus equal to that of the 
composite; and erne is the area under the stress-strain curve for an elastic 
material having an ultimate strength a,,, and a Young’s modulus equal to 
the initial Young’s modulus of the matrix (see Fig. 1). 
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Fig. 5. Young’s modulus of glass bead-polyester resin composites as a function of the 
volume fraction of the glass beads. 

0 

By substituting eqs. (18) and (19) into (17), an expression for de, can 
be obtained : 

ece 
em, 

de, = - de, 

which after integration gives 

where ece represents the area under the stress-strain curve for the elastic 
composite and the ratio e,/eme represents the deviation of the real composite 
from linear behavior. 

Limitations of the Theory 

Equations (15) and (21) can be expected to  hold well for matrices having 
relatively low ultimate strains (below 5%) and highly rigid, nondeformable 
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Fig. 6. Ultimate strain of the composite in the case of no adhesion between the matrix 
Theoretical prediction is hased on eq. (15) and the strength theory pro- and the filler. 

posed in the reference 2. 

fillers. Since these equations do not take into account sliding of the matrix 
over the surfaces of the filler particles (leading to  additional elongation), 
they do not‘apply to  systems where the coefficient of friction between the 
matrix and the filler is low (for example, when the filler is treated with a 
lubricant). 

Equations (15) and (21) show discontinuities at V,  = Vbmin due to a 
change in the value of urn (as discussed in detail in the reference 2). For 
real systems, a continuous transition would, of course, be expected. 

RESULTS AND DISCUSSION 

Figures 2, 3, and 4 characterize the matrix used in the experiments. 
Figure 2 shows the stress-strain curve compared with an idealized linear 
behavior. For stress above 5000 psi, there is a considerable deviation from 
linear behavior, and the ratio of ern/crne increases from 1 to 1.24. The 
modulus of the resin decreases from 396,000 psi a t  cm’ = 0 to 190,000 psi 
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Fig. 7. Ultimate strain of the composite in case of matrix-filler adhesion. 
prediction is based on eq. (15). 

Theoretical 
Discontinuity in the solution occurs a t  Vb = Vbmin.  

at a,' = 8,000 psi, as shown in Figure 3. Figure 4 shows the area under 
the stress-strain curve as a function of applied stress for this resin and in 
general for idealized, perfectly elastic materials. The ratio e,/e,, here 
changes from 1 to 1.36. 

Figure 5 shows the modulus of the composite as a function of volume 
fraction of the beads, compared with the theoretical predictions of Kernerlo 
and Guth and Smallwood.s For this particular system, Kerner's predic- 
tions tend to define the lower bound, whereas Guth and Smallwood's 
results define the upper-bound values. 

An empirical modification of Guth and Smallwood's equation below is 
closer to the mean trend although the experimental values show consider- 
able scatter: 

E J E ,  = 1 + 2.5Vl + 9.6V12. (22) 

Nevertheless, this equation was used for the subsequent calculations. The 
values of modulus appear to be independent of matrix-filler adhesion and 
the size of the filler particles. 
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Fig. 8. Area under the stress-strain curve in case of no adhesion between the matrix 
Theoretical prediction is based on eq. (21) and the strength theory prc- and the filler. 

posed in reference 2. 

Figure 6 shows the ultimate strain of the composite as a function of 
volume fraction of the beads in the case of zero adhesion between matrix 
and filler, whereas Figure 7 depicts the situation for good adhesion between 
matrix and filler. Smaller filler particles and better adhesion gave higher 
ultimate elongations for the composite. Composites containing fillers 
treated with coupling agents show higher ultimate strains than those con- 
taining untreated fillers. 

The volume fraction of filler has a pronounced effect on the area under 
the tensile stress-strain curve for the case of zero adhesion and also 
good matrix-filler adhesion as shown in Figures 8 and 9, respectively. 
Since the area under the stress-strain curve is proportional to  the ulti- 
mate strength to the second power, the results tend to be more scattered 
than the values of ultimate strain which have only first-power dependence 
on the ultimate strength. In  general, predicted values tend to  be higher 
than the experimental results. 
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Fig. 9. Area under the stress-strain curve in case of matrix-filler adhesion. 
prediction is based on eq. .(21). 

Theoretical 
Discontinuity in the solution occurs at v6 = v6 min. 

Figure 10 shows the unnotched Izod impact strength as a function of the 
volume fraction of the filler. The results are too scattered to draw any 
definite conclusions, but they seem to show the same trend as the results 
shown in Figures 8 and 9. Figure 11 is a plot of the area under the stress- 
strain curve versus the unnotched Izod impact strength. Again, the results 
are scattered, but the trend can be easily noticed. The greater the area 
under the stress-strain curve, the greater the impact strength. Such a 
correlation would not necessarily apply to other systems. 

CONCLUSIONS 

It has been suggested that the ultimate strain of a particulate-filled 
composite may be approximated by the relationship 
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Fig. 10. Unnotched Izod impact strength as a function of the volume fraction of the 
filler. The curves were drawn to indicate the general trend. 

and that the area under tensile stress-strain curve can be approximated by 
a similar equation : 

(21) 
em e, = - ece. 

These two equations allow for an increase in the ultimate strain and the area 
under the stress-strain curve due to  deviation of filled polymers from linear 
behavior. 

Equations (15) and (21) which depend on the strength theory proposed 
in reference 2 and the appropriate modulus relationship can be used to 
calculate the ultimate strain and the area under the stress-strain curve. 
A knowledge of the area under the tensile stress-strain curve and the pa- 
rameters influencing it is especially important since it is an indication of the 
relative toughness. 

Composites containing small filler particles with good matrix-filler 
adhesion exhibit higher ultimate strains, larger stress-strain areas, and 
correspondingly greater impact strengths. Increasing the volume fraction 

eme 
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Fig. 11. Relationship between the unnotched Tzod impact strength and the area under 
the tensile stress-strain curve. 

of the filler normally decreases the ultimate elongation, the impact strength, 
and the area pnder the stress-strain curve. 

This theoretical treatment assumes spherical-shaped filler particles. 
Further experiments would be necessary to  determine whether the above 
approach can be applied to fillers of irregular shape. 

Notation 

Young’s modulus of the composite 
Young’s modulus of the matrix 
area under the stress-strain curve of the composite 
area under the stress-strain curve for idealized, perfectly elastic 

area under the stress-strain curve of the matrix (for urn’ changing 

area under the stress-strain curve for idealized, perfectly elastic 

volume fraction of the beads 
volume fraction of the filler at which the strength of the composite 

composite 

from 0 to  a,) 

matrix (for a,’ changing from 0 to a,) 

is minimum 



PARTICULATE-FILLED COMPOSITES 2651 

ultimate strain of the composite 
ultimate strain of the idealized, perfectly elastic composite 
strain of the matrix (for urnf changing from 0 to urn) 
strain of the idealized, perfectly elastic matrix 
stress carried by the composite 
stress carried by the matrix 
ultimate strength of the composite 
stress carried by the matrix at the breaking point of the composite 
Poisson’s ratio of the matrix 
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